SHORT COMMUNICATIONS

Halogen Addition to Esters of 7-Methylenebicyclo[3.3.1]non-2-en-3-ol

M. Yu. Skomorokhov and Yu. N. Klimochkin

Samara State Technical University, Samara, 443010 Russia

Received January 9, 2001

Electrophilic addition of halogens to pseudoconjugated π - π -systems is sufficiently well studied by the example of bicyclo[3.3.1]nonane derivatives that via transannular cyclization afford 1,3-disubstituted adamantanes [1, 2].

We found that esters of 7-methylenebicyclo[3.3.1]-non-2-en-3-ol **Ia**, **b** rapidly reacted with halogens (Br₂, I₂) in tetrachloromethane yielding 1,4-dihalo-3-substituted adamantanes **II-IIIa**, **b**. The analysis of ¹H NMR spectra of compounds obtained revealed that the halogens added to esters **Ia**, **b** to afford exclusively 1,4-dihalides **IIa**, **b**, **IIIa**, **b** in Z-configuration.

$$\begin{array}{c}
\text{OR} \\
\text{Ia, b} \\
\text{Hlg}_2
\end{array}$$

R = (CH₂)₂OAc (a), (CH₂)₂OC(O)PhNO₂-p (b);Hlg = I (II), Br (III).

(*Z*)-1-(2-Acetoxyethoxy)-2,5-diiodoadamantane (*IIa*). To 0.7 g (3 mmol) of compound *Ia* in 15 ml of tetrachloromethane at 20°C was added 0.79 g (3.1 mmol) of iodine, the mixture was stirred for 40 min, treated with water solution of Na_2SO_3 , the organic layer was washed with water, dried on anhydrous Na_2SO_4 , the solvent was distilled off. We obtained 1 g (70%) of compound *IIa*, $n_{D_1}^{20}$ 1.6752. IR spectrum, cm⁻¹: 1750, 1240, 1050. H NMR

spectrum (CDCl₃), δ , ppm: 1.62–2.71 m (12H, Ad), 2.08 s (3H, COCH₃), 3.73 m (2H, COCH₂), 4.17 m (2H, CH₂OAc), 4.61 s (1H, ICH). Mass spectrum, m/z ($I_{\rm rel}$, %): 363 [M–127] $^+$ (2.4), 91 (11.5), 87 (100), 43 (31.2). Found, %: C 34.19; H 4.06. C₁₄H₂₀I₂O₃. Calculated, %: C 34.31; H 4.11.

(*Z*)-2,5-Diiodo-1-[2-(4-nitrobenzoyloxy)ethoxy]-adamantane (*IIb*) was obtained by a similar procedure. Yield 60%, mp 141–142°C (hexane). IR spectrum, cm⁻¹: 1735, 1600, 1520, 1240, 1050. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.61–2.83 m (12H, Ad), 3.79 m (2H, COCH₂), 4.43 m [2H, CH₂OC(O)], 5.02 s (1H, ICH), 8.2–8.4 m (4H). Mass spectrum, m/z (I_{rel} , %): 470 [M-127]⁺ (3.2), 195 (54.3), 194 (100), 149 (63.2), 104 (41.6). Found, %: C 38.09; H 3.56; N 2.31. C₁₉H₂₁I₂NO₅. Calculated, %: C 38.21; H 3.56; N 2.35.

(Z)-3-(2-Acetoxyethoxy)-1,4-dibromoadamantane (IIIa) was obtained by reaction of compound Ia with bromine (-5°C, 10 min). The reaction product was isolated by chromatography on silica gel. Yield 35%, n_D^{20} 1.6332. IR spectrum, cm⁻¹: 1750, 1240, 1050. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.62–2.54 m (12H, Ad), 2.07 s (3H, COCH₃), 3.63 m (2H, COCH₂), 4.19 m (2H, CH₂OAc), 4.39 d (1H, BrCH, *J* 17 Hz). Mass spectrum, m/z (I_{rel} , %): 396 [M] (1.2), 107 (91.1), 84 (100), 43 (60.0). Found, %: C 42.29; H 5.16. $C_{14}H_{20}Br_2O_3$. Calculated, %: C 42.45; H 5.09.

(*z*)-1,4-Dibromo-3-[2-(4-nitrobenzoyloxyethoxy]-adamantane (IIIb) was obtained in a similar way. Yield 23%, mp 149–152°C (hexane). IR spectrum, cm⁻¹: 1735, 1600, 1520, 1240, 1050. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.61–2.53 m (12H, Ad), 3.71 m (2H, COCH₂), 4.46 m [2H, CH₂OC(O)], 4.83 d (1H, BrCH, *J* 17 Hz). Mass spectrum, *m/z* (I_{rel} , %): 503 [M]⁺ (0.5), 195 (50.2), 194 (100), 149 (62.0), 104 (35.7). Found, %: C 45.26; H 4.17; N

2.73. $C_{19}H_{21}Br_2NO_5$. Calculated, %: C 45.35; H 4.21; N 2.78.

IR spectra were recorded on spectrophotometer IKS-22, ¹H NMR spectra were registered on spectrometer Bruker AC-200 (200 MHz, internal reference HMDS). Mass spectra were measured on Finnigan MAN JNCOS 50 instrument, ionizing electrons energy 70 eV.

REFERENCES

- Krasutskii, P.A., Fokin, A.A., and Yurchenko, A.G., Zh. Org. Khim., 1985, vol. 21, no. 12, pp. 2518–2522.
- 2. Serguchev, Yu.A., Krasutskii, P.A., and Yurchenko, A.G., *TEKh.*, vol. 22, no. 6, pp. 743–747.
- 3. Skomorokhov, M.Yu. and Klimochkin, Yu.N., *Zh. Org. Khim.*, 2001, vol. 37, no. 7, pp. 1096–1097.